On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet Bases

نویسندگان

  • Gregory Beylkin
  • James M. Keiser
چکیده

requires the development of new algorithms, which are introduced in this paper. This work develops fast and adaptive algorithms for numerically solving nonlinear partial differential equations of the form ut 5 Any wavelet-expansion approach to solving differential Lu 1 N f (u), where L and N are linear differential operators and equations is essentially a projection method. In a projection f (u) is a nonlinear function. These equations are adaptively solved method the goal is to use the fewest number of expansion by projecting the solution u and the operators L and N into a coefficients to represent the solution since this leads to wavelet basis. Vanishing moments of the basis functions permit a sparse representation of the solution and operators. Using these efficient numerical computations. The number of coeffisparse representations fast and adaptive algorithms that apply opercients required to represent a function expanded in a Fouators to functions and evaluate nonlinear functions, are developed rier series (or similar expansions based on the eigenfuncfor solving evolution equations. For a wavelet representation of the tions of a differential operator) depends on the most solution u that contains Ns significant coefficients, the algorithms singular behavior of the function. We are interested in update the solution using O(Ns) operations. The approach is applied to a number of examples and numerical results are given. Q 1997 solutions of partial differential equations that have regions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

Numerical solution of variational problems via Haar wavelet quasilinearization technique

In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.

متن کامل

Numerical solution of non-planar Burgers equation by Haar wavelet method

In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve the non-planar Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the non-planar Burgers equation. The basic idea of Haar wavelet collocation method is to convert the partial differential equation into a system of algebraic equations that involves a ...

متن کامل

Convergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations

In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...

متن کامل

Numerical solution of nonlinear SPDEs using a multi-scale method

‎In this paper we establish a new numerical method for solving a class of stochastic partial differential equations (SPDEs) based on B-splines wavelets‎. ‎The method combines implicit collocation with the multi-scale method‎. Using the multi-scale method‎, ‎SPDEs can be solved on a given subdomain with more accuracy and lower computational cost than the rest of the domain‎. ‎The stability and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997